Lda Based Face Recognition by Using Hidden Markov Model in Current Trends
نویسندگان
چکیده
Hidden Markov model (HMM) is a promising method that works well for images with variations in lighting, facial expression, and orientation. Face recognition draws attention as a complex task due to noticeable changes produced on appearance by illumination, facial expression, size, orientation and other external factors. To process images using HMM, the temporal or space sequences are to be considered. In simple terms HMM can be defined as set of finite states with associated probability distributions. Only the outcome is visible to the external user not the states and hence the name Hidden Markov Model. The paper deals with various techniques and methodologies used for resolving the problem .We discuss about appearance based, feature based, model based and hybrid methods for face identification. Conventional techniques such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA), and feature based Elastic Bunch Graph Matching (EBGM) and 2D and 3D face models are wellknown for face detection and recognition.
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملDiscriminant Analysis of Stochastic Models and Its Application to Face Recognition
As the vital component of a recently developed stochastic model based feature generation scheme, Fisher score is increasingly used in classification applications. In this work we present a generalization of previous proposed feature generation schemes by introducing the concept of multi-class mapping which is oriented to multi-class classification problems. Based on the generalized feature gene...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملImproved robustness of automatic speech recognition using a new class definition in linear discriminant analysis
This work discusses the improvements which can be expected when applying linear feature-space transformations based on Linear Discriminant Analysis (LDA) within automatic speechrecognition (ASR). It is shown that different factors influence the effectiveness of LDA-transformations. Most importantly, increasing the number of LDA-classes by using time-aligned states of Hidden-Markov-Models instea...
متن کاملA generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کامل